ANALISIS SENTIMEN ULASAN BANTUAN SOSIAL (BANSOS) DI TWITTER MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM)

Authors

  • GILANG BRILIAN RACHMAT Universitas Jenderal Achmad Yani Yogyakarta
  • Puji Winar Cahyo
  • Fajar Syahruddin Universitas Jenderal Achmad Yani Yogyakarta

DOI:

https://doi.org/10.30989/teknomatika.v15i1.1137

Keywords:

Bansos, Analisis Sentimen, Support Vector Machine, Text Mining

Abstract

Background: Social assistance (bansos) is assistance provided to the community/social institutions in a non-continuous and selective manner in the form of money/goods to the community, aiming to improve the welfare of the community. The purpose of this study is to create an analytical model using the Support Vector Machine method which is used to perform Sentiment analysis regarding social assistance (bansos) on Twitter. Research Method: using the Support Vector Machine (svm) method. Based on the classification results, a lot of negative tweet data and many netizens regret that social assistance is still not evenly distributed and there is still a lot of social assistance corruption by the government itself which is marked by a lot of negative sentiments rather than positive sentiments. Conclusion: This study succeeded in testing the accuracy using the Support Vector Machine (SVM) method with a value of 84% on training data and 97% on testing data.

References

[1] Haryatmoko, “Pengertian Bantuan sosial.,” 2011, [Daring]. Tersedia pada: https://djpb.kemenkeu.go.id/kppn/ketapang/id/data-publikasi/artikel/3080- program-bantuan-sosial-dan-akuntabilitasnya.html

[2] A. Novantirani, M. K. Sabariah, dan V. Effendy, “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine,” eProceedings of Engineering, vol. 2, no. 1, 2015.

[3] D. S. Utami dan A. Erfina, “Analisis Sentimen Pinjaman Online di Twitter Menggunakan Algoritma Support Vector Machine (SVM),” dipresentasikan pada Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra, 2021, hlm. 299–305.

[4] M. F. Dzukaidah dan D. S. Prasvita, “ANALISIS SENTIMEN PROGRAM BANTUAN SOSIAL TUNAI PADA SOSIAL MEDIA TWITTER MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” dipresentasikan pada Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya, 2022, hlm. 569–580.

[5] Y. V. Wijaya, A. Erfina, dan C. Warman, “Analisis Sentimen Seputar UU ITE Menggunakan Algoritma Support Vector Machine,” Progresif: Jurnal Ilmiah Komputer, vol. 17, no. 2, hlm. 1–14, 2021.

[6] R. Tineges, A. Triayudi, dan I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” Jurnal Media Informatika Budidarma, vol. 4, no. 3, hlm. 650–658, 2020.

[7] A. ASTIANA, “ANALISIS SENTIMEN TERHADAP PENERIMAAN BANTUAN SOSIAL TUNAI PADA TWITTER MENGGUNAKAN ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINE,” 2022.

[8] E. Mas’ udah, E. D. Wahyuni, dan A. Anjani, “Analisis sentimen: Pemindahan ibu kota Indonesia pada twitter,” Jurnal Informatika dan Sistem Informasi, vol. 1, no. 2, hlm. 397–401, 2020.

[9] I. M. Parapat, M. T. Furqon, dan S. Sutrisno, “Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 10, hlm. 3163–3169, 2018.

[10] Z. Alhaq, A. Mustopa, S. Mulyatun, dan J. D. Santoso, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter,” Journal of Information System Management (JOISM), vol. 3, no. 1, hlm. 16–21, 2021.

Published

2022-03-27

How to Cite

BRILIAN RACHMAT, G. ., Winar Cahyo, P. ., & Syahruddin, F. (2022). ANALISIS SENTIMEN ULASAN BANTUAN SOSIAL (BANSOS) DI TWITTER MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM). Teknomatika: Jurnal Informatika Dan Komputer, 15(1), 11–16. https://doi.org/10.30989/teknomatika.v15i1.1137