PERBANDINGAN METODE DECISION TREE DAN NAIVE BAYES CLASSIFIER PADA ANALISIS SENTIMEN PENGGUNA LAYANAN PT PERUSAHAAN LISTRIK NEGARA (PLN)
DOI:
https://doi.org/10.30989/teknomatika.v15i2.1131Keywords:
PLN, Analisis Sentimen, Decision tree, Naive BayesAbstract
Background : PLN is a state-owned company that is tasked with supplying electricity to all regions of Indonesia which certainly cannot be separated from the various obstacles experienced, to find out public sentiment on the services that have been provided, an analysis is carried out to determine public sentiment. The results of these sentiments are created in the dashboard using the Flask framework by comparing the Naive Bayes and Decision tree methods. To create a sentiment analysis dashboard for PT. PLN and make a research analysis model using a comparison of the Naive Bayes Classification and Decision tree methods. The method used in this research is Naive Bayes and Decision tree. The data obtained with a total of 40,745 Tweet data taken in the period 1 May 2022 - 4 June 2022 with the keyword "PLN". Making a dashboard that displays the results of the analysis where there is a menu to display the data and each analysis process. The use of 900 training data and 300 testing data resulted in the Naive Bayes method getting an accuracy of 83% on the training data and 80% for the Testing data, while the Decision tree method got an accuracy of 77% on the Training data and 56% on the Testing data. The analysis obtained for the method in this study also shows that the Naive Bayes method is better for classifying large amounts of data than the Decision tree. The sentiment generated by the highest number is negative, with most of the Tweets being complaints about the response to complaints and handling of damage reported by the public.
References
[2] W. E. Nurjanah, R. S. Perdana, dan M. A. Fauzi, “Analisis Sentimen Terhadap Tayangan Televisi Berdasarkan Opini Masyarakat pada Media Sosial Twitter menggunakan Metode K-Nearest Neighbor dan Pembobotan Jumlah Retweet,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 12, hlm. 1750–1757, 2017.
[3] R. Puspita dan A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” J. Inform. Univ. Pamulang, vol. 5, no. 4, hlm. 646, 2021.
[4] M. Putra dan M. Putera, “Analisis Perbandingan metode SOAP dan REST yang digunakan pada Framework Flask untuk membangun Web Service,” Scan: Jurnal Teknologi Informasi dan Komunikasi, vol. 14, no. 2, hlm. 1–7, 2019.
[5] D. N. Batubara, A. P. Windarto, dan E. Irawan, “Analisis Prediksi Keterlambatan Pembayaran Listrik Menggunakan Komparasi Metode Klasifikasi Decision Tree dan Support Vector Machine,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 1, hlm. 102–108, 2022.
[6] F. F. Rachman dan S. Pramana, “Analisis sentimen pro dan kontra masyarakat Indonesia tentang vaksin COVID-19 pada media sosial Twitter,” Indonesian of Health Information Management Journal (INOHIM), vol. 8, no. 2, hlm. 100–109, 2020.
[7] N. Ruhyana, “Analisis Sentimen Terhadap Penerapan Sistem Plat Nomor Ganjil/Genap Pada Twitter Dengan Metode Klasifikasi Naive Bayes,” IKRA-ITH Informatika: Jurnal Komputer dan Informatika, vol. 3, no. 1, hlm. 94–99, 2019.
[8] F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng-Seri Informatika, vol. 3, no. 1, hlm. 50–59, 2018.
[9] D. Darwis, N. Siskawati, dan Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” Jurnal Tekno Kompak, vol. 15, no. 1, hlm. 131–145, 2021.
[10] B. P. Pratiwi, A. S. Handayani, dan S. Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix,” Jurnal Informatika Upgris, vol. 6, no. 2, 2020.