ANALISIS PROYEKSI KEBUTUHAN TENAGA KERJA BERDASARKAN SKILLS YANG DIBUTUHKAN MENGGUNAKAN ALGORITMA NAIVE BAYES CLASSIFIER
DOI:
https://doi.org/10.30989/ijds.v2i1.1346Keywords:
Unemployment, Unemployment Reduction Strategy, Naive Bayes Classifier, Classification, Labor Demand Projection.Abstract
In August 2023, Indonesia faced an unemployment rate of 7.86 million people, although there is no denying that the percentage of unemployment has decreased from the previous year. The data is categorized into four groups, namely unemployment involves those who are looking for work, trying to set up a business having trouble landing a job, and even those who have worked but have not started. The Covid-19 pandemic changed the paradigm of work to remote, but the need for job information remains key. Labor demand projections provide long-term insights into promising sectors and fields, guiding job seekers to develop skills according to labor market trends. This research was conducted using naive bayes classification, which is a text classification method that relies on the likelihood of keywords to compare training and testing documents. This classification method is expected to help reduce unemployment rates and align individual skills with industry needs, contributing to education and training policies to make smart career decisions in the digital era.
Downloads
Published
Issue
Section
Citation Check
License
Indonesian Journal On Data Science allows readers to read, download, copy, distribute, print, search, or link to its articles' full texts and allows readers to use them for any other lawful purpose. The journal allows the author(s) to hold the copyright without restrictions. Finally, the journal allows the author(s) to retain publishing rights without restrictions
- Authors are allowed to archive their submitted articles in an open access repository
- Authors are allowed to archive the final published article in an open access repository with an acknowledgment of its initial publication in this journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Generic License.