Sistem Deteksi Dini Anemia pada Anak Usia 0-59 Bulan Menggunakan Naïve Bayes dan Optimasi Particle Swarm Optimization
DOI:
https://doi.org/10.30989/teknomatika.v18i1.1574Keywords:
Early Detection, Anemia, Naïve Bayes, Particle Swarm , OptimizationAbstract
Anemia in children aged 0–59 months poses a serious health concern with long-term effects on growth and development. This study aims to develop a web-based early detection system for childhood anemia using a Naïve Bayes algorithm enhanced with Particle Swarm Optimization (PSO). The system uses secondary data from the 2018 Demographic and Health Survey in Nigeria, which includes variables such as age, nutritional status, and medical history. Although the dataset is from Nigeria, the variables are universal and relevant, making the findings applicable for similar model development in other regions.The Naïve Bayes algorithm is employed for classifying anemia levels, while PSO is applied to improve prediction accuracy by optimizing feature weights and tuning model parameters. Results show an increase in accuracy from 92.17% to 95.71% after optimization. This demonstrates PSO’s effectiveness in improving model performance, especially in datasets with imbalanced class distributions.The system is implemented as a user friendly website, allowing quick and accessible anemia detection. This solution is particularly useful in regions with limited healthcare access. The findings indicate that combining Naïve Bayes with PSO can enhance predictive accuracy and support broader efforts to improve child health outcomes.
References
[1] R. Susanti and L. Elfianti, “Prediksi Diagnosis Anemia Melalui Metode Klasifikasi Berbasis Machine Learning,” J. Artif. Intell. Appl. ( JAIA ) vol. 1, no. 1, pp. 36–43, 2024.
[2] “Dosen FK Unpas: Kenali Anemia dan Tips Berpuasa Bagi Penderitanya.” [Online]. Available: https://www.unpas.ac.id/dosen-fk-unpas-kenali-anemia-dan-tips-berpuasa-bagi-penderitanya/
[3] T. A. Hindriati and N. Herawati, “Deteksi Dini dan Pencegahan Anemia Pada Ibu Hamil Trimester III di Desa Penyengat Olak Kecamatan Jambi Luar Kota,” Indones. Berdaya, vol. 5, no. 1, pp. 141–148, 2023, doi: 10.47679/ib.2024662.
[4] Y. Amelia, “Perbandingan Metode Machine Learning Untuk Mendeteksi Penyakit Jantung,” IDEALIS Indones. J. Inf. Syst., vol. 6, no. 2, pp. 220–225, 2023, doi: 10.36080/idealis.v6i2.3043.
[5] U. A. Rheni Aprilia Ningrum, Agus Priyanto, “Implementasi Algoritma Fuzzy Tsukamoto Untuk Diagnosis Penyakit Anemia (Studi Data: Rekam Medis Pasien Ibu RSIA Bunda Arif Purwokerto),” Infokes J. Ilm. Rekam Medis dan Inform. Kesehat., vol. 11, pp. 65–72, 2021, doi: https://doi.org/10.47701/infokes.v11i2.1303.
[6] M. Sukron, A. Supriadi, and R. Sulton, “Optimasi Metode Naïve Bayes Menggunkanan Algoritma Particle Swarm Optimization (Pso) Untuk Prediksi Penyakit Diabetes Mellitus,” COREAI J. Kecerdasan Buatan, Komputasi dan Teknol. Inf., vol. 2, no. 2, pp. 18–24, 2022, doi: 10.33650/coreai.v2i2.3304.
[7] D. E. Yanti, L. Framesti, and A. Desiani, “JIP (Jurnal Informatika Polinema) PERBANDINGAN ALGORITMA C4.5 DAN SVM DALAM KLASIFIKASI PENYAKIT ANEMIA,” pp. 427–434, 2022, [Online]. Available: https://www.kaggle.com/datasets/biswaranjanrao/an
[8] N. N. K. Pada, “KOMPARASI ALGORITMA C4 . 5 DAN K- KLASIFIKASI PENYAKIT ANEMIA,” vol. 9, no. 2, pp. 110–113, 2024.
[9] I. Arfanda, W. Ramdhan, and R. A. Yusda, “Naive Bayes Dalam Menentukan Penerima Bantuan Langsung Tunai,” Digit. Transform. Technol., vol. 1, no. 1, pp. 9–16, 2021, doi: 10.47709/digitech.v1i1.1091.
[10] W. S. Dharmawan, “I N F O R M a T I K a Dalam Prediksi Penyakit Jantung,” J. Inform. Manaj. dan Komput., vol. 13, no. 2, pp. 31–41, 2021.
[11] A. Rizky Fadilla and P. Ayu Wulandari, “Literature Review Analisis Data Kualitatif: Tahap PengumpulanData,” Mitita J. Penelit., vol. 1, no. No 3, pp. 34–46, 2023.
[12] M. E. Buchanan, “Methods of data collection,” AORN J., vol. 33, no. 1, 1981, doi: 10.1016/S0001-2092(07)69400-9.
[13] A. Rahmat, M. Syafiih, and M. Faid, “Implementasi Klasifikasi Potensi Penyakit Jantung Dengan Menggunakan Metode C4.5 Berbasis Website ( Studi Kasus Kaggle.Com ),” INFOTECH J., vol. 9, no. 2, pp. 393–400, 2023, doi: 10.31949/infotech.v9i2.6295.
[14] J. Cao, Pre-processing Big Data for Business. In: E-Commerce Big Data Mining and Analytics. Springer, Singapore, 2023. doi: https://doi.org/10.1007/978-981-99-3588-8_3.
[15] S. W. Link, “AND PSYCHOLOGICAL MODELS,” vol. 29, no. 1, pp. 6–14, 1997.
[16] T. D. Putra, E. Utami, and M. P. Kurniawan, “Analisis Sentimen Pemilu 2024 dengan Naive Bayes Berbasis Particle Swarm Optimization (PSO),” Explore, vol. 13, no. 1, pp. 1–5, 2023, doi: 10.35200/ex.v11i2.13.
[17] Taofik Safrudin, G. Tri Pranoto, and W. Hadikristanto, “Optimasi Algoritma K- Nearest Neighbor Berbasis Particle Swarm Optimization Untuk Meningkatkan Kebutuhan Barang,” Bull. Inf. Technol., vol. 4, no. 3, pp. 281–286, 2023, doi: 10.47065/bit.v4i3.724.
[18] B. Kata and D. A. N. Frekuensi, “PENERAPAN ALGORITMA NAIVE BAYES DENGAN CHI-SQUARE UNTUK KLASIFIKASI SPAM EMAIL,” vol. 13, no. 1, 2025.
[19] M. Ishi, J. Patil, and V. Patil, “An efficient team prediction for one day international matches using a hybrid approach of CS-PSO and machine learning algorithms,” Array, vol. 14, no. February, p. 100144, 2022, doi: 10.1016/j.array.2022.100144.
[20] S. Suprihanto, I. Awaludin, M. Fadhil, and M. A. Z. Zulfikor, “Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta,” J. Inform., vol. 9, no. 2, pp. 116–122, 2022, doi: 10.31294/inf.v9i1.13049.
[21] Y. A. Singgalen, “Analisis Performa Algoritma NBC, DT, SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM,” Build. Informatics, Technol. Sci., vol. 4, no. 3, 2022, doi: 10.47065/bits.v4i3.2766.