Implementasi Fuzzy Inference System Tsukamoto dalam Mendiagnosis Penyakit Tuberkulosis Paru pada Tahap Awal

  • Andri Armaginda Siregar Andri Universitas Nahdlatul Ulama Sumatera Utara

Abstract

Abstract


This study proposes the implementation of the Tsukamoto Fuzzy Inference System for early diagnosis of Pulmonary Tuberculosis. A web-based expert system was developed to analyze clinical symptoms, demonstrating the positive impact of artificial intelligence in the medical field. Symptom data were sourced from medical literature, medical records of Klinik Pratama Haji Medan Pancing, and interviews with medical practitioners at the clinic. Using 128 Tsukamoto fuzzy rules, the system predicts indications of Pulmonary Tuberculosis based on seven symptom variables. The research findings indicate that this technology implementation enhances early detection of Pulmonary Tuberculosis, offering a solution for Klinik Pratama Haji Medan Pancing and establishing an expert system accessible via a web interface, ensuring accessibility. The system's implementation also proves effective in analyzing clinical symptoms at early stages, providing a significant tool for medical practitioners. Validation results show a high accuracy rate in detecting potential diseases, supporting further potential developments in similar medical applications. The application of this system is expected to alleviate the workload of medical practitioners in expediting Pulmonary Tuberculosis management and enhancing healthcare service quality.

References

[1] A. R. Lahitani, “Automated Essay Scoring menggunakan Cosine Similarity pada Penilaian Esai Multi Soal,” J. Kaji. Ilm., vol. 22, no. 2, pp. 107–118, 2022, doi: 10.31599/jki.v22i2.1121.
[2] M. R. Ma’arif, A. Priyanto, C. B. Setiawan, and P. W. Cahyo, “The Design of Cost Efficient Health Monitoring System based on Internet of Things and Big Data,” in 9th International Conference on Information and Communication Technology Convergence: ICT Convergence Powered by Smart Intelligence, ICTC 2018, 2018. doi: 10.1109/ICTC.2018.8539374.
[3] U. Saidata Aesyi and P. W. Cahyo, “Cuscoma: Platform Peningkatan Penjualan Produk Berdasarkan Analisis Komentar Pelanggan di Marketplace Shopee Menggunakan Metode Metode Rule-Based,” J. Sains dan Inform., vol. 9, no. November 2022, pp. 1–8, 2023, doi: 10.34128/jsi.v9i1.539.
[1] V. Amrizal and Q. Aini, Kecerdasan Buatan, 2013.
[2] B. Yanti, "Penyuluhan Pencegahan Penyakit Tuberkulosis (Tbc) Era New Normal," Martabe: Jurnal Pengabdian Kepada Masyarakat, vol. 4, no. 1, p. 325, 2021, doi: 10.31604/jpm.v4i1
[3] Kemkes.go.id, "Melalui Kegiatan INA – TIME 2022 Ke-4, Menkes Budi Minta 90% Penderita TBC Dapat Terdeteksi di Tahun 2024 – P2P Kemenkes RI," [Online]. Available: https://p2p.kemkes.go.id/melalui-ina-time-2022-ke-4-menkes-budi-minta-90-penderita-tbc-dapat-terdeteksi-di-tahun-2024/. [Accessed: Sep. 3, 2023].
[4] S. Miftaviana, "Sistem Pakar Diagnosa Penyakit Pada Paru-Paru Dengan Metode Case Based Reasoning (CBR) Berbasis Web," Doctoral dissertation, Universitas Islam Riau, 2022.
[5] I. A. Nasrulloh, "PENERAPAN FUZZY INFERENCE SYSTEM DENGAN METODE TSUKAMOTO PADA PREDIKSI JUMLAH PRODUKSI KRUPUK KULIT RAMBAK," Doctoral dissertation, Universitas Muhammadiyah Ponorogo, 2023.
[6] F. Sarie, I. N. T. Sutaguna, S. S. Par, M. Par, I. P. Suiraoka, S. ST, and I. T. W. Massenga, Metodelogi penelitian, Cendikia Mulia Mandiri, 2023.
[7] A. Z. D. N. Adiya, D. L. Anggraeni, and I. Albana, "Analisa Perbandingan Penggunaan Metodologi Pengembangan Perangkat Lunak (Waterfall, Prototype, Iterative, Spiral, Rapid Application Development (RAD))," Merkurius: Jurnal Riset Sistem Informasi dan Teknik Informatika, vol. 2, no. 4, pp. 122-134, 2024, doi : 10.61132/merkurius.v2i4.148.
[8] B. K. A. Alfari, T. Hastono, and W. N. Aziza, "Penentuan Bonus Karyawan Menggunakan Fuzzy Mamdani: (Studi Kasus PT. ABC)," Mars: Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer, vol. 2, no. 2, pp. 34-44, 2024, doi : 10.61132/mars.v2i2.90
[9] J. Chen and G. Gustientiedina, "Implementasi Fuzzy Expert System Mendeteksi Penyakit Parkinson Berbasis Mobile," in Seminar Nasional Informatika (SENATIKA), Jan. 2024, pp. 11-22.
[10] C. Putri Maharani, "Sistem Pakar untuk Deteksi Kerusakan Inkubator Bayi dengan Metode Fuzzy Logic," Doctoral dissertation, Universitas Islam Sultan Agung Semarang, 2023.
[11] D. T. Yanti and I. Hidayanti, "Perancangan Sistem Informasi Pendataan Paspor yang Tercetak pada Kantor Imigrasi Kelas I TPI Palembang," in Prosiding Seminar Sosial Politik, Bisnis, Akuntansi dan Teknik, vol. 5, pp. 588-595, Dec. 2023, doi : 10.32897/sobat.2023.5.0.3129
[12] K. Rochmanila, "Perancangan User Interface dan User Experience Pada Aplikasi Bergerak Donor Darah menggunakan Metode User Centered Design (UCD)," Doctoral dissertation, Universitas Islam Indonesia, 2024.
Published
2024-11-15
How to Cite
Andri, A. A. S. (2024). Implementasi Fuzzy Inference System Tsukamoto dalam Mendiagnosis Penyakit Tuberkulosis Paru pada Tahap Awal. Teknomatika: Jurnal Informatika Dan Komputer, 17(2), 13-21. https://doi.org/10.30989/teknomatika.v17i2.1390
Section
Articles