Analisis Sentimen Opini Masyarakat Tentang Penggunaan Aplikasi Bimbingan Belajar Online di Masa Pandemi Covid-19 Menggunakan Metode Support Vector Machine (SVM)

  • Albet Gunawan
  • Andika Bayu Saputra
  • M. Abu Amar Al Badawi Universitas Jenderal Achmad Yani Yogyakarta

Abstract

Distance learning has emerged as a response to the Covid-19 pandemic, providing students with a new approach to learning. Online learning platforms, utilizing information technology, have become essential in connecting students and teachers. Online tutoring applications offer valuable supplementary educational materials, with various features to support the learning process. Analyzing sentiment on Twitter regarding these online tutoring applications is crucial in determining the best options for students. This study aims to develop an analytical model using the Support Vector Machine (SVM) for online tutoring applications during the Covid-19 pandemic. The research focuses on analyzing positive and negative sentiments within Twitter data, utilizing the Support Vector Machine (SVM) method. The training phase involved 800 manually labeled tweets, consisting of 400 positive and 400 negative sentiments. For testing, 23,511 labeled data points were used. The training data achieved an accuracy of 91.81%. The research successfully achieved an accuracy rate of 90.62% for training and 91% for testing.

References

[1] R. Pakpahan and Y. Fitriani, “Analisa pemanfaatan teknologi informasi dalam pembelajaran jarak jauh di tengah pandemi virus corona covid-19,” JISAMAR (Journal of Information System, Applied, Management, Accounting and Research), vol. 4, no. 2, pp. 30–36, 2020.

[2] D. A. Wulandari, R. R. Saedudin, and R. Andreswari, “Analisis Sentimen Media Sosial Twitter Terhadap Reaksi Masyarakat Pada Ruu Cipta Kerja Menggunakan Metode Klasifikasi Algoritma Naive Bayes,” eProceedings of Engineering, vol. 8, no. 5, 2021.

[3] A. M. Pravina, I. Cholisoddin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 2789–2797, 2019.

[4] P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi Dan Ilmu Komputer, vol. 8, no. 1, p. 147, 2021.

[5] H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021.

[6] Y. Marini, N. Marina, M. M. Nasution, M. A. Lubis, and others, “APLIKASI RUANG GURU UNTUK PEMBELAJARAN DI ERA COVID-19,” DIRASATUL IBTIDAIYAH, vol. 1, no. 2, pp. 198–214, 2021.

[7] H. S. Utama, D. Rosiyadi, B. S. Prakoso, D. Ariadarma, and others, “Analisis sentimen sistem ganjil genap di tol Bekasi menggunakan algoritma Support Vector Machine,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 3, no. 2, pp. 243–250, 2019.

[8] H. Tuhuteru and A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” Jurnal Informatika, vol. 3, no. 03, 2018.

[9] H. Tuhuteru and A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” Jurnal Informatika, vol. 3, no. 03, 2018.

[10] L. A. Andika, P. A. N. Azizah, and R. Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indonesian Journal of Applied Statistics, vol. 2, no. 1, pp. 34–41, 2019.
Published
2022-10-27
How to Cite
Gunawan, A., Saputra, A. B., & Al Badawi, M. A. A. (2022). Analisis Sentimen Opini Masyarakat Tentang Penggunaan Aplikasi Bimbingan Belajar Online di Masa Pandemi Covid-19 Menggunakan Metode Support Vector Machine (SVM). Teknomatika: Jurnal Informatika Dan Komputer, 15(2), 62-67. https://doi.org/10.30989/teknomatika.v15i2.1132
Section
Articles