Analisis Sentimen Ulasan Produk Layanan Internet di Twitter Menggunakan Naive Bayes Classifier
DOI:
https://doi.org/10.30989/teknomatika.v14i2.1108Keywords:
Flask, Indihome, Python Programming Language, Twitter Sentiment Analysis, Web-based Sentiment Analysis AppAbstract
This research aimed to conduct sentiment analysis on user reviews of Indihome, one of Indonesia's leading internet service providers, using data collected from Twitter. With a growing user base of 7 million, Indihome achieved an impressive revenue growth rate of 48% by the end of 2019. To assess user satisfaction, sentiment analysis was performed on tweets containing the keyword "indihome" between July 1 and July 11, 2022. A total of 10,000 tweets and retweets were collected and subjected to data preprocessing, manual labeling, and training using the Naive Bayes Classifier method. The training phase involved 1,000 tweets, equally divided between positive and negative sentiments, manually labeled for accuracy. For evaluation, 200 labeled tweets were used as testing data. The sentiment analysis results were remarkable, with 98% accuracy achieved for the training data and 91% for the testing data. These findings demonstrate the effectiveness of the Naive Bayes Classifier in accurately determining sentiment from Indonesian-language tweets about Indihome's services. By analyzing user opinions expressed on Twitter, this study provides valuable insights into the level of user satisfaction with Indihome as an internet service provider. Leveraging sentiment analysis applications on Twitter social media enables companies like Indihome to gain a deeper understanding of customer sentiment and make informed decisions to improve their services. The research showcases the importance and effectiveness of sentiment analysis in evaluating user feedback and enhancing customer satisfaction in the internet service industry.
References
[2] N. P. Sari and A. Budiatmo, “Pengaruh Harga dan Kualitas Pelayanan terhadap Loyalitas Pelanggan melalui Kepuasan Pelanggan sebagai Variabel Intervening (Studi pada Pelanggan Indihome PT Telekomunikasi Indonesia, Tbk.(Persero) Semarang,” Jurnal Ilmu Administrasi Bisnis, vol. 8, no. 4, pp. 200–209, 2019.
[3] A. A. Purwati, R. F. Malau, and M. L. Hamzah, “Strategi Pemasaran Jasa Dan Kepuasan Pelanggan Indihome Pt Telkom Indonesia,” Procuratio: Jurnal Ilmiah Manajemen, vol. 8, no. 1, pp. 74–93, 2020.
[4] M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan metode na\"\ive bayes dan support vector machine pada analisis sentimen twitter,” SMATIKA Jurnal: STIKI Informatika Jurnal, vol. 10, no. 02, pp. 71–76, 2020.
[5] F. S. Pamungkas and I. Kharisudin, “Analisis Sentimen dengan SVM, NAIVE BAYES dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter,” in PRISMA, Prosiding Seminar Nasional Matematika, 2021, pp. 628–634.
[6] B. M. Pintoko and K. M. Lhaksmana, “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Na\"\ive Bayes Classifier,” eProceedings of Engineering, vol. 5, no. 3, 2018.
[7] S. Samsir, A. Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Na\"\ive Bayes,” Jurnal Media Informatika Budidarma, vol. 5, no. 1, pp. 157–163, 2021.
[8] M. Muljono, D. P. Artanti, A. Syukur, A. Prihandono, and others, “Analisa Sentimen Untuk Penilaian Pelayanan Situs Belanja Online Menggunakan Algoritma Na\"\ive Bayes,” Konferensi Nasional Sistem Informasi (KNSI) 2018, 2018.
[9] B. W. Sari and F. F. Haranto, “Implementasi Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter Terhadap Pelayanan Telkom Dan Biznet,” Jurnal Pilar Nusa Mandiri, vol. 15, no. 2, pp. 171–176, 2019.
[10] L. A. Andika, P. A. N. Azizah, and R. Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indonesian Journal of Applied Statistics, vol. 2, no. 1, pp. 34–41, 2019.