Analisis Sentimen Transfer Pemain Klub La Liga Spanyol Pada Bursa Transfer Musim Dingin Eropa Di Twitter

Penulis

  • Ahmad Adita Shiddiq Universitas Jenderal Achmad Yani Yogyakarta, Indonesia
  • Aris Wahyu Murdiyanto
  • Arif Himawan Universitas Jenderal Achmad Yani Yogyakarta, Indonesia

DOI:

https://doi.org/10.30989/ijds.v1i1.859

Kata Kunci:

Analisis Sentimen, Naive Bayes Classifier, La Liga Spanyol

Abstrak

Dari beberapa kompetisi Sepak Bola yang ada, Liga Champions UEFA yang paling digemari oleh masyarakat. Pada tahun 2022 bursa transfer pemain Eropa dibuka, bursa transfer yang dilakukan merupakan cara jangka pendek untuk memperbaiki tim dalam mengejar prestasi sepak bola Dengan media sosial sebagai wadah komunitas, para penggemar sepak bola dapat juga menyalurkan opini, informasi dan berita tentang klub kesayangan kepada masyarakat. Opini masyarakat terhadap transfer pemain Liga Spanyol memiliki peranan penting. Dengan dilakukannya analisis sentimen terhadap opini, dapat dijadikan suatu pola prediksi penilaian masyarakat terhadap transfer pemain serta dapat memberikan saran kepada tim sepak bola terkait bursa transfer pemain pada periode musim selanjutnya.

  Membuat analisis sentiment penggemar sepak bola terhadap transfer pemain Liga Spanyol apakah bersifat positif dan negatif. Metode Naïve Bayes Classifer (NBC) dalam penelitian ini dipilih dikarenakan pada algoritma NBC dapat melakukan proses pengolahan data diskrit dan data kuantitatif dengan menggunakan sampel yang relative sedikit dan juga perhitungan pada algoritma NBC lebih cepat.

Pengambilan data berupa topik mengena keyword “Transfer La Liga”, “Transfer Real Madrid”, “Transfer Barcelona”, “Transfer Liga Spanyol” dan “Transfer Copa Del Ray”. Data tweet di ambil dari periode 1 Januari 2020 sampai dengan 31 Mei 2022, dengan jumlah data total 11.282. Pada penelitian telah berhasil mendapatkan akurasi dengan nilai 81,67 % pada data training dan 85 % untuk data testing.  Pada penelitian ini berhasil membuat model analisis sentimen berupa file.pickle yang dimana untuk melakukan klasifikasi dan prediksi pada data tweet untuk mendapatkan sebuah hasil sentimen positif dan negative. Penelitian ini telah berhasil mendapatkan akurasi dengan nilai 81,67 % pada data training dan 85 % untuk data testing.Hasil analisis sentimen akhir dalam klasifikasi penelitian ini bernilai “Sentimen Negatif”

Diterbitkan

2023-05-11

Citation Check