Analisis Sentimen Transfer Pemain Klub La Liga Spanyol Pada Bursa Transfer Musim Dingin Eropa Di Twitter
DOI:
https://doi.org/10.30989/ijds.v1i1.859Kata Kunci:
Analisis Sentimen, Naive Bayes Classifier, La Liga SpanyolAbstrak
Dari beberapa kompetisi Sepak Bola yang ada, Liga Champions UEFA yang paling digemari oleh masyarakat. Pada tahun 2022 bursa transfer pemain Eropa dibuka, bursa transfer yang dilakukan merupakan cara jangka pendek untuk memperbaiki tim dalam mengejar prestasi sepak bola Dengan media sosial sebagai wadah komunitas, para penggemar sepak bola dapat juga menyalurkan opini, informasi dan berita tentang klub kesayangan kepada masyarakat. Opini masyarakat terhadap transfer pemain Liga Spanyol memiliki peranan penting. Dengan dilakukannya analisis sentimen terhadap opini, dapat dijadikan suatu pola prediksi penilaian masyarakat terhadap transfer pemain serta dapat memberikan saran kepada tim sepak bola terkait bursa transfer pemain pada periode musim selanjutnya.
Membuat analisis sentiment penggemar sepak bola terhadap transfer pemain Liga Spanyol apakah bersifat positif dan negatif. Metode Naïve Bayes Classifer (NBC) dalam penelitian ini dipilih dikarenakan pada algoritma NBC dapat melakukan proses pengolahan data diskrit dan data kuantitatif dengan menggunakan sampel yang relative sedikit dan juga perhitungan pada algoritma NBC lebih cepat.
Pengambilan data berupa topik mengena keyword “Transfer La Liga”, “Transfer Real Madrid”, “Transfer Barcelona”, “Transfer Liga Spanyol” dan “Transfer Copa Del Ray”. Data tweet di ambil dari periode 1 Januari 2020 sampai dengan 31 Mei 2022, dengan jumlah data total 11.282. Pada penelitian telah berhasil mendapatkan akurasi dengan nilai 81,67 % pada data training dan 85 % untuk data testing. Pada penelitian ini berhasil membuat model analisis sentimen berupa file.pickle yang dimana untuk melakukan klasifikasi dan prediksi pada data tweet untuk mendapatkan sebuah hasil sentimen positif dan negative. Penelitian ini telah berhasil mendapatkan akurasi dengan nilai 81,67 % pada data training dan 85 % untuk data testing.Hasil analisis sentimen akhir dalam klasifikasi penelitian ini bernilai “Sentimen Negatif”
Unduhan
Diterbitkan
Terbitan
Bagian
Citation Check
Lisensi
Indonesian Journal On Data Science allows readers to read, download, copy, distribute, print, search, or link to its articles' full texts and allows readers to use them for any other lawful purpose. The journal allows the author(s) to hold the copyright without restrictions. Finally, the journal allows the author(s) to retain publishing rights without restrictions
- Authors are allowed to archive their submitted articles in an open access repository
- Authors are allowed to archive the final published article in an open access repository with an acknowledgment of its initial publication in this journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Generic License.