Metode Latent Dirichlet Allocation Untuk Menentukan Topik Pada Review Drama Korea

Authors

  • Alfun Roehatul Jannah Universitas Jenderal Achmad Yani Yogyakarta, Indonesia
  • Ria Kristi Universitas Jenderal Achmad Yani Yogyakarta, Indonesia
  • Muhammad Habibi Universitas Jenderal Achmad Yani Yogyakarta, Indonesia

DOI:

https://doi.org/10.30989/ijds.v2i1.1345

Keywords:

Korean dramas, South Korean culture, k-drama, review, LDA, Latent Dirichlet Allocation

Abstract

The Hallyu Wave, involving the spread of South Korean culture and popular media, has rapidly grown over the past two decades. In addition to entertainment industries such as K-pop and K-drama, this phenomenon has also extended into the food and K-beauty sectors. Korean dramas, as the core of Hallyu, have become a global phenomenon with a continuously expanding fan base worldwide. A global survey in 2022 indicated that 36 percent of respondents in 26 countries considered Korean dramas very popular in their respective countries. In Indonesia, Korean films and dramas remain favorites, with 72 percent of streaming audiences choosing them on OTT services throughout 2022. Viu dominates as the most popular Korean drama streaming platform with 57 percent usage, followed by Netflix, Telegram, and WeTv. This research focuses on the analysis of Korean drama review data from 2015 to 2023 using the Latent Dirichlet Allocation (LDA) method. The goal is to provide a deep understanding of critical aspects such as acting, storyline, and cinematography. With LDA, this research aims to identify topics related to these elements, offering specific insights into audience preferences. From the conducted research, 10 ideal topics emerged out of 20 existing topics to ensure topic consistency using topic coherence. From the topic coherence results for these 20 topics, it can be concluded that the overall topic score for topic 10 is 0.527, providing ideal results for topic modeling in accordance with the rules.

References

[1] G. Ganghariya and R. Kanozia, “Proliferation of Hallyu wave and Korean popular culture across the world: A systematic literature review from 2000-2019,” Journal of Content, Community and Communication, vol. 10, no. 6. Amity University, pp. 177–207, Jun. 01, 2020. doi: 10.31620/JCCC.06.20/14.
[2] R. Hasya, “Drama Korea Masih Jadi Favorit Masyarakat Indonesia dalam Streaming Film dan Serial di Tahun 2022,” GoodStats.
[3] R. Pahlevi, “Bukan Netflix, Penonton Drakor Indonesia Paling Banyak Nonton Lewat Platform Ini,” databoks.
[4] G. Rosalinda, R. Santoso, and P. Kartikasari, “PEMODELAN TOPIK ULASAN APLIKASI NETFLIX PADA GOOGLE PLAY STORE MENGGUNAKAN LATENT DIRICHLET ALLOCATION,” Jurnal Gaussian, vol. 11, no. 4, pp. 554–561, Feb. 2023, doi: 10.14710/j.gauss.11.4.554-561.
[5] L. Zhao, Q. Zhao, and Y. Wang, “Research on Chinese Movie Reviews Based on Latent Dirichlet Allocation Topic Model,” in Proceedings - 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence, MLBDBI 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 46–49. doi: 10.1109/MLBDBI51377.2020.00016.
[6] S. Karmila, V. Intan Ardianti Prodi Telematika Energi, and V. Intan Ardianti, “METODE LATENT DIRICHLET ALLOCATION UNTUK MENENTUKAN TOPIK TEKS SUATU BERITA,” Jurnal Informatika & Komputasi, vol. 16, 2022.
[7] M. D. R Wahyudi, A. Fatwanto, U. Kiftiyani, and M. Galih Wonoseto, “Topic Modeling of Online Media News Titles during COVID-19 Emergency Response in Indonesia Using the Latent Dirichlet Allocation (LDA) Algorithm,” Telematika, vol. 14, no. 2, pp. 101–111, Aug. 2021, doi: 10.35671/telematika.v14i2.1225.
[8] D. M. Blei, A. Y. Ng, and J. B. Edu, “Latent Dirichlet Allocation Michael I. Jordan,” 2003.
[9] J. C. Campbell, A. Hindle, and E. Stroulia, “Latent Dirichlet Allocation,” in The Art and Science of Analyzing Software Data, Elsevier, 2015, pp. 139–159. doi: 10.1016/B978-0-12-411519-4.00006-9.
[10] T. K. Kurniasari, W. Maharani, and J. H. Husen, “Analisis Media Sosial Twitter untuk Mengetahui Pengguna Berpengaruh pada Portal Berita di Indonesia dengan Metode TSIM (Topic-based Social Influence Measurment).”
[11] K. B. Putra and R. P. Kusumawardani, “Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA),” Jurnal Teknik ITS, vol. 6, no. 2, Sep. 2017, doi: 10.12962/j23373539.v6i2.23205.

Published

2024-08-07

Citation Check