Topic Modeling dan Social Network Analysis digunakan untuk mencari keterkaitan topik pada Tweet Pembahasan Saham
DOI:
https://doi.org/10.30989/ijds.v1i1.900Keywords:
lda, sna, twitter, saham, topic modelingAbstract
Pada tahun 2020, jumlah orang yang melakukan trading di Indonesia mengalami peningkatan meskipun terjadi pandemic covid19. Dalam hitungan jumlah investor pada tahun 2020 mencapai 3.5 juta investor sedangkan pada tahun 2021 meningkat menjadi 7.5 investor. Melalui adanya peningkatan ini, maka jumlah posting tentang saham dan tutorial mengenai trading saham di media sosial meningkat cukup drastis. Maka penelitian ini mencoba untuk melakukan analisis keterkaitan topik pembicaraan saham pada sosial media Twitter dengan menggunakan integrasi topic modelling dan Social Network Analysis (SNA). Proses pembagian topik ideal menggunakan coherence measurement menentukan sebanyak 5 topik ideal. Melalui lima topik yang dihasilkan dari topic modelling tersebut kemudian dilakukan analisis menggunakan SNA sehingga menghasilkan nilai degree centrality, betweeness centrality, dan closeness centrality yang sama pada setiap topik. Nilai tersebut diantaranya: 4 untuk nilai degree centrality, 0.4 untuk betweeness centrality dan 1 untuk closeness centrality. Melalui hasil tersebut maka perlunya evaluasi dalam pembentukan SNA dengan menggunakan topic modeling. Evaluasi tersebut salah satunya bisa dilakukan melalui identifikasi pada tweet yang memiliki kesamaan pembahasan meskipun dengan penulisan redaksi yang berbeda, atau dapat dilakukan dengan cara menambah variasi data dengan cara memperlama waktu pengambilan.
Downloads
Published
Issue
Section
Citation Check
License
Indonesian Journal On Data Science allows readers to read, download, copy, distribute, print, search, or link to its articles' full texts and allows readers to use them for any other lawful purpose. The journal allows the author(s) to hold the copyright without restrictions. Finally, the journal allows the author(s) to retain publishing rights without restrictions
- Authors are allowed to archive their submitted articles in an open access repository
- Authors are allowed to archive the final published article in an open access repository with an acknowledgment of its initial publication in this journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Generic License.