Segmentation of Divorce Factors by Province in Indonesia in 2024 with K-Means and DBSCAN
DOI:
https://doi.org/10.30989/ijds.v3i2.1654Keywords:
Divorce, Causal factors, Clustering, Province, DBSCANAbstract
Divorce is a complex social phenomenon that continues to increase in Indonesia. Based on data from 34 provinces, divorce is influenced by various factors, both internal and external to the household. This research aims to describe the main factors causing divorce based on national data and review relevant literature using machine learning methods, especially unsupervised learning techniques in the form of clustering. The dominant factors found include constant disputes and arguments, economic problems, domestic violence, abandonment of one of the parties, and infidelity. This research uses K-Means and DBSCAN algorithms to compare the results. It is known that the best modeling with Silhoutte Score comparison is DBSCAN of 0.331. DBSCAN with optimal clusters was obtained from a combination of epsilon parameter 2.9 and minimum sample 2. The clustering results were then further analyzed to evaluate the data distribution and identify the dominant characteristics in each cluster. These findings indicate the need for a multidisciplinary approach in understanding and addressing divorce issues in Indonesia in order to reduce the divorce rate and improve the quality of family life.
References
[1] Republik Indonesia, UNDANG-UNDANG REPUBLIK INDONESIA NOMOR 1 TAHUN 1974 TENTANG PERKAWINAN. Indonesia: Badan Pemeriksa Keuangan, 1974. Accessed: Jun. 04, 2025. [Online]. Available: https://www.google.com/url?q=https://peraturan.bpk.go.id/Download/36382/UU%2520Nomor%25201%2520Tahun%25201974.pdf&sa=D&source=docs&ust=1749016417389455&usg=AOvVaw2S_bIumm8Tn2wekigRIbWm
[2] N. Suryaningrum, “Determinan Perceraian di Jakarta Timur Tahun 2014 (Studi Data Pengadilan Agama dan Pengadilan Negeri),” Forum Ilmu Sosial, vol. 46, no. 2, pp. 128–141, 2019, doi: 10.15294/fis.v46i2.19627.
[3] A. Tristanto, “PERCERAIAN DI MASA PANDEMI COVID-19 DALAM PERSPEKTIF ILMU SOSIAL,” Sosio Informa, vol. 6, no. 3, 2020, doi: https://doi.org/10.33007/inf.v6i3.2417.
[4] Badan Pusat Statistik Indonesia, “Jumlah Perceraian Menurut Provinsi dan Faktor Penyebab Perceraian (perkara), 2024,” Badan Pusat Statistik Indonesia. Accessed: Jun. 01, 2025. [Online]. Available: https://www.bps.go.id/id/statistics-table/3/YVdoU1IwVmlTM2h4YzFoV1psWkViRXhqTlZwRFVUMDkjMw==/jumlah-perceraian-menurut-provinsi-dan-faktor-penyebab-perceraian--perkara---2024.html?year=2024
[5] N. S. Manna, S. Doriza, and M. Oktaviani, “Cerai Gugat: Telaah Penyebab Perceraian Pada Keluarga di Indonesia,” Jurnal AL-AZHAR INDONESIA SERI HUMANIORA, vol. 6, no. 1, 2021, doi: https://doi.org/10.36722/sh.v6i1.443.
[6] S. Mutiah, Y. Hasnataeni, A. Fitrianto, E. Erfiani, and L. M. R. D. Jumansyah, “Perbandingan Metode Klastering K-Means dan DBSCAN dalam Identifikasi Kelompok Rumah Tangga Berdasarkan Fasilitas Sosial Ekonomi di Jawa Barat,” Teorema: Teori dan Riset Matematika, vol. 9, no. 2, p. 247, Sep. 2024, doi: 10.25157/teorema.v9i2.16290.
[7] A. S. Devi, I. K. G. D. Putra, and I. M. Sukarsa, “Implementasi Metode Clustering DBSCAN pada Proses Pengambilan Keputusan,” Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, p. 185, Dec. 2015, doi: 10.24843/lkjiti.2015.v06.i03.p05.
[8] S. F. S. Reza and W. Cholil, “Implementasi Algoritma Random Forest Terhadap Prediksi Good Loan/Bad Loan Kredit Nasabah Bank Di Jakarta,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), vol. 4, no. 2, 2023, Accessed: Jun. 06, 2025. [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/2578/1947
[9] E. N. R. Khakim, A. Hermawan, and D. Avianto, “IMPLEMENTASI CORRELATION MATRIX PADA KLASIFIKASI DATASET WINE,” JIKO (Jurnal Informatika dan Komputer), vol. 7, no. 1, p. 158, Feb. 2023, doi: 10.26798/jiko.v7i1.771.
[10] F. M. Pranata, S. H. Wijoyo, and N. Y. Setiawan, “Fakultas Ilmu Komputer Analisis Performa Algoritma K-Means dan DBSCAN Dalam Segmentasi Pelanggan Dengan Pendekatan Model RFM,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 1, pp. 2548–964, 2017, Accessed: Jun. 06, 2025. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/13962/6211
[11] M. A. CHERID, “METODE DBSCAN CLUSTERING UNTUK ANALISIS POLA PENYEBARAN HUJAN DI SUMENEP,” UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM , MALANG, 2023. Accessed: Jun. 06, 2025. [Online]. Available: http://etheses.uin-malang.ac.id/59686/1/19610011.pdf
[12] M. S. Badawi, F. Suria, E. Elfiani, W. Tsunami, and R. Saputra, “ANALISIS KLASTER PASIEN RUMAH SAKIT JIWA KOTA KENDARI TAHUN 2022-2023 IDENTIFIKASI POLA DAN KARAKTERISTIK MENGGUNAKAN METODE DBSCAN,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, pp. 3072–3079, Mar. 2025, doi: 10.36040/jati.v9i2.13247.
[13] A. Tate, “When To Choose Density-Based Methods (Compare, k-means, DBSCAN and Hierarchical Clustering),” Hex Technologies Inc. Accessed: Jun. 04, 2025. [Online]. Available: https://hex.tech/blog/comparing-density-based-methods/#:~:text=DBSCAN%20inherently%20identifies%20and%20separates,susceptible%20to%20noise%20and%20outliers.
[14] M. I. Sholik, F. Rosyid, K. Mufa’idah, T. Agustina, and U. R. Ashari, “MERANTAU SEBAGAI BUDAYA (EKSPLORASI SISTEM SOSIAL MASYARAKAT PULAU BAWEAN),” Jurnal Cakrawala, vol. 10, no. 2, 2016, Accessed: Jun. 01, 2025. [Online]. Available: https://www.cakrawalajournal.org/index.php/cakrawala/article/view/39
[15] M. Zakih, “Pengaruh Faktor Ekonomi dalam Kasus Perceraian Terhadap Putusan Pengadilan Agama di Jember (Studi Kasus Putusan PA Jember Nomor 4318/Pdt.G/2023/PA.Jr.),” Jurnal Cahaya Mandalika, vol. 5, no. 2, 2024, doi: https://doi.org/10.36312/jcm.v5i2.3790.
[16] W. M. Prananta and Ifrohati, “Pertengkaran Terus Menerus Sebagai Alasan Paling Tinggi pada Perkara Cerai Gugat di Pengadilan Agama Kelas Ib Sungailiat,” Journal of Sharia and Legal Science, vol. 2, no. 2, pp. 194–209, Aug. 2024, doi: 10.61994/jsls.v2i2.675.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Selly Rizkiyah, Indira, Milla Akbarany Bakhtiar Putri, Shindi Shella May Wara, Wahyu Syaifullah Jauharis Saputra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal On Data Science allows readers to read, download, copy, distribute, print, search, or link to its articles' full texts and allows readers to use them for any other lawful purpose. The journal allows the author(s) to hold the copyright without restrictions. Finally, the journal allows the author(s) to retain publishing rights without restrictions
- Authors are allowed to archive their submitted articles in an open access repository
- Authors are allowed to archive the final published article in an open access repository with an acknowledgment of its initial publication in this journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Generic License.
